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ABSTRACT

We show that for each positive integer k there is a & x k matrix B with
+1 entries such that putting E to he the span of the rows of the k x 2k
matrix [\/I:I;,.. B]. then E, E1 is a Kashin splitting: The L%’" and the L%k
are universally equivalent on both E and EL. Moreover, the probability
that a random %1 matrix satisfies the above is exponentially close to 1.

1. Introduction

For 0 <p < oc and n € N let L} denote R" with the norm

n
Ielag = Y ),
i=1

where & = (@1,22,....2,). A celebrated theorem of Kashin [Ka] states that
L3* can be decomposed into two orthogonal (with respect to the inner product
induced by || - ||;2x) k-dimensional subspaces on each of which the two norms
[l Ilzy and || -

Ly are universally equivalent, i.e.. putting, for a subset E C LT,
Co(E) = sup{llelly /llellprix € E v # 0},
we can find a k-dimensional subspace of L?* for which

Co(E). Con(EYy < C

* Supported by the Israel Science Foundation.
Received March 11, 2003

337



338 G. SCHECHTMAN Isr. J. Math.

where C < oo is some universal constant. We shall call such a choice of (orthog-
onal) subspace(s) a IKashin splitting with constant C.

The proof(s) of the Kashin theorem are probabilistic and do not produce an
explicit subspace E as above. For example, it is shown that with high probability
over the orthogonal group O(k) (where the probability is the Haar measure), the
span of the rows of the k x 2k matrix [Uy, Uz}, where Uy, Uy € O(k) are chosen
independently, is such a subspace.

In a recent paper Anderson [An] found an explicit determinantal formula for
Cor(E) and Cyy(EL) for any k-dimensional subspace E (involving determinants
of k x k submatrices of the & x 2k matrix whose rows are any basis of E). An-
derson then continues and presents a discretization of (a variant of) the random
decomposition, reducing the search of a Kashin splitting to a search among &k x 2k
matrices with integer entries (ranging in some bounded, though of size exponen-
tial in k, set). The point is that this suggests a possibility of finding an explicit
Kashin splitting. It also permits a (not very efficient) search algorithm for finding
a good Kashin splitting (although, it seems, for that the main point in the paper,
the determinantal formulas, can be avoided).

In this paper we take this direction one step farther by showing that one can
replace the integral matrices by matrices whose entries are taken only from the set
{0, vk, 1, —1}. More precisely, we show in Theorem 1 that with high probability
for a random choice of k& x k matrix B with entries being independent Bernoulli
41 variables, the span of the rows of the matrix [\/ZI , B] form a Kashin splitting
with some universal constant. (Since vk is not necessarily an integer, one may
wonder whether this is, strictly speaking, a strengthening of Anderson’s result.
However, in the proof of Theorem 1 below one can easily replace V& with [VE]
everywhere and get such a formal strengthening.)

We would like next to indicate what Anderson’s determinantal formula gives
for such matrices. For R,C two subsets of {1,2,...,k} denote by Brc the
submatrix of B formed by the rows in R and the columns in C. For a submatrix
D = Brc of B and row i € R let D_; be the matrix By} c; similarly for
aj ¢ C let DY be the matrix Brcugjy- Forl=1,2,...,k -1, a (+1)x1
submatrix D = Bg ¢ of B and p = 1, 2 denote

i/p
A,(D.B) = <k')/22|det Dl +3 IdetvD’“jI”) :
iefl j¢C

Using Anderson’s determinantal formulas one gets, as we shall indicate in Corol-
lary 1, that for a kX k matrix B the rows of [V/kI, B] form a Kashin decomposition
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with constant

ko) e S5

where the two inner max are taken over alll = 1,2,...,k—1, and over all (I+1) x!
submatrix D of B, for the first max, and of B*, for the second.

It follows from our main theorem that there is a k& x k matrix B with 1 entries
for which

- Ay(D, B As(D, B*)

(1) MHlax{lnax{m%},lllax{m}}
is bounded by a constant independent of & and for such a matrix this gives the
splitting constant.

This of course gives an algorithm (still not very efficient) for searching for
a Kashin splitting, but more importantly, it suggests that there might be an
algebraic or combinatorial method of finding an explicit splitting. The formula
(1) gives an explicit criterion for deciding whether a +1 matrix produces such a
splitting.

2. The main result

We shall denote by ||al|, the C;‘, norm of @ = (a1, a9, ..., an),

n
lallp = (Y la:)"/?
1=1

(notice the difference with ||| z» defined earlier). Denote by S k=1 the Euclidean
unit sphere in R¥ and by Bl’;" the unit ball of (;;’, 0 < p < oo Given a =
(a1,as....,a,) € R¥ denote

ko k 1/p
E,(a) = Ave <k—1 SN a,-si,jv’)

j=1 i=1

where the average is taken over all sequences of signs {¢; ;}. As is well known
27172 < Ei(a) < Ej(a) < 1. (See [Sz] for the stated explicit lower bound;
we only need some absolute positive lower bound which follows from Khinchine’s
inequality.) In the sequel P denotes the natural probability measure on {-1, 1}"’2
and the general element in this probability space is denoted by {s”}f j=1- We
begin with two concentration inequalities.
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LEMMA 1: There is an absolute positive constant 1 such that for all k, all « € R"
and all 0 < C < .

koo k
@ P(["'_l D1 aisigl =~ Ey(a)] > CE;(a.)) < emnCk
j=1 i=1

and
k k ‘)
(3) P(l(A;—l > aiei )Y = Ex(a)| > CE2(a.)) < ek
j=1 i=1
Proof: Let f,g: R¥" — R be the functions defined by

i tor= (15 (Sn) )

j=1

fla) =

i=1

for v = {ai;}¥ j=1- Both functions are convex and Lipschitz with constant |||l
with respect to the (.’}"2 norm. The latter statement can be proved by computing
the norm of the gradients of the functions at their points of differentiability. The
analogous inequality to (2), where E;(«) is replaced with the median of f, follows
from the main result of [Ta]. That the median can be replaced with the mean is
simple, well known, and can be found, e.g., in [MS] Proposition V.4. Inequality
(3) is dealt with similarly. ]

For 1 <1 < k denote
FF={a=(a1,a2,...,a3) € BY:a; # 0 for at most [ values of i}.

We now extend the concentration inequalities of Lemma 1 to simultaneous
inequalities for the sets FF.

PROPOSITION 1: There are absolute positive constants n and « such that for all
kandl < ok,

(3

J_

E1 (l)

E i€

> Fy(a)/4, for some a € Ff’) < ek

and

(5 () )

i=1

> Es{a)/4. for some a € Fl’“) < ek,

Proof: Given two sets A, B in a linear space we denote by N (A, B) the minimal
number of shifts of B whose union covers A.
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For o C {1.2..... k} denote F¥ = {(ay.as.. ... ay) € BSia; = 0fori ¢ a}.
Fix some 1 <7 < k. then by the usual volume estimates (see. e.g., [MS]) for each
subset o C {1.2..... k} of cardinality [ and for all 0 < § < 1, N(F¥.6BS) <

(26— 1. Tt follows from Lemma 1 that for some absolute 7 > 0.

(gl -5

where A is some d-net in F¥. If § is a small enough positive universal constant

(a)

> E\(a)/8. for some a € \) < ¢! lo8(2/9)=nk

and I/k is small enough with respect to the universal constants § and 5 (so that
el 1082/ 0)=nk < ¢=1k/2) it now follows by successive approximation (see, e.g..
[MS]) that

o el

Put a = I/k; assume a < 1/2 and also small enough for (4) to hold. Notice
that, by Stirling’s formula, the number of subsets of {1.2,....k} of cardinality

<i‘> < P:}A‘n log(l/a}
1) S .

E1 (1)

;\‘

k
PRI

J=1t'i=1

E\(a)

> E\(a)/4. for some a € F"> < emMh/2,

can be evaluated as

It follows from (4) that

(gl

j=11i=1

> Eq{a)/4. for some a € F,"')
< ()31\'0 log(]/a)—qk/z'

Finally, if alog(1/a) < 5/12. the last quantity is less than e~"%/4, which finishes
the proof of the first assertion. The second is proved very similarly. |

LEMMA 2: Let a = (ay,as.. ... ax) be a norm one vector in (’ and let 0 < v < 1.
Assume k~3/25°%_ a;| < 4. Then

k 1/2
(Z(a;)2> < ' E(E—1+1)

for all 1 <1 <k, where {a}} denotes the decreasing rearrangement of {|a;|}.

Proof: For each 1 <1< k. (k—1+1)(a})? > 3% (a7). Tt follows that

3 1/2
¥ 2 TN e > Ve > U(k(k -1+ 1)) I/Q(Z )

i=1 e
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from which the conclusion follows. ]

For 0 < 4 < 1, k € N, denote

k
Af;: {(mESk_l;k:_l/ZZ)ailg'y} ={ € sk, ::a::u < }
Lk

=1

Next we extend the concentration inequalities to the sets Af;.

PROPOSITION 2: There are absolute constants 0 < v < 1 and i > 0 such that
for all k,

s

=1

k
E Qici j

i=1

E1 (L)

> Ey(a)/2, for some a € Ai) < e

and

('( XA: (za’“’3> )1/2 - 1' > 1/2, for some a € 4§> < e,

Proof: Notlce first that by the usual e-net considerations starting with Lemma
1, there are some absolute ' < oo and 7 > 0 such that

k
E (I‘Evi.j

=1

> C||a||a, for some a € R"’) <e Mk

.

and

k & 2\ 1/2
P((k_l Z <Zais,~,j) ) > Cllal|a, for some a € R"’) < ek,

(Actually, the first assertion follows trivially from the second.) Let [ = [ak]
where « is the constant from Proposition 1. Now choose v > 0 such that, putting

§=1""/k(k=1+1),3C5 <1/4/2.
By Lemma 2, each a € A% can be split as « = b+ ¢ with b € F} and [|c[|2 < 4.
Let {¢; ;} be such that both

&) Yy

j=1

k
2 bigij| —

i=

b)| < Eq(b)/4

iy

k

> cigi

i=1

(6) k1 ( < Cllella-

k
] =

1
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Then the condition on ¢ implies that

|" 12 Z“MJ

j=1"%i=1

=

E1 (l) S E]((I)/Q

Since, by Proposition 1 and the first paragraph of this proof, the probability that
at least one of inequalities (5) or (6) does not hold is less than e~"*, we get
the first assertion of the Proposition (with a different absolute 7). The second
assertion is proved very similarly. |

Given signs {=; ;}¥ j=1» we shall denote by B the k x k matrix with entries
{eij}fj= and by A = [VEI, B] the k x 2k matrix whose first & columns form
VI, and the last k columns form B. We shall also denote A = [—~B*, v/kI] with
the obvious meaning (where B* is the transpose of B). Note that the row spans
of A and of A form orthogonal subspaces of L3¥. We are now ready to state and
prove our main result.

THEOREM 1: For some absolute 7 > 0 and C < oo and for all k there are signs
{ij}F =1 such that for all a € S¥~1,

cl <

ad

IL;‘ = L2k S C

and

aA

ct<|

w2+ < lladl g < C.

Moreover, this holds with probability larger than 1 — e~ "*,

Proof: As in the beginning of the proof of Proposition 2, it follows from Lemma
1 that for some absolute C' and 7 and with probability at least 1 — e~7*,

k k 2\ 1/2
< (’\7_1 Z (Z(l"fs'i~j> > <C

j=1 Vi=1

for all @ € S*=1. Of course, the same holds also if we replace €y with —¢;;
everywhere. It follows easily that, with probability 1 — 7%,

aA||p2x < |lad|| e < (1 +CHV2/V2
Ly L3

and

laA

L2k < “CLA”Lg’“ <(1+ Ca)l/g/\/5

for all « € §*—1.
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For the lower bound let 5 be the constant from Proposition 2. Then, with

probahility 1 —e~"%,
I‘.

]\.—l Z

=1

A‘

_S_ 4iZij

i=1

> 1/2V2

for all « € 4" (and the same holds with —z;; instead of =; ;). For the other

a € SI.:— 1 .
A.

g[_l/zzl(tg[ > 5.

i=1

It follows easily that, with probability at least 1 — e~"%,

flad| L3k 2 ‘l(l-“llL'i’k' > min{~/2.1/4v2}
and

lad|lzge > llad||pzn > min{y/2.1/4v2}
for all « € SF—1. ]

Recall the definition of A,(D. B) appearing in the Introduction.

COROLLARY 1: There is a constant C' < oc such that for all k there is a k x k
matrix B with +1 entries such that

- Ay(D, B) As(D, B¥)
2k mi N e Sl ; A Sl S <C,
(7) V2k max{ma‘{{Al(D.B) }’mdx{Al(D.B*) }} <C
where the first inner max is taken over alll = 1,2, ..., k=1, and over all (1+1) x1

submatrix D of B for which the denominator is not zero, while the second inner
max is taken over alll = 1,2,...,k — 1, and over all (I + 1) x I submatrix D of
B*.

Moreover, the left hand side of (7) is equal to max{Cst(E), Cor(EL}, where
E is the span of the rows of [VEI, B).

Proof: By Theorem 1 we only need to address the “Moreover” part. This follows
easily from section 2.5 in Anderson [An], in which it is shown, in our notation,
that for a & x 2k matrix A and for F being the span of its rows,

By AN ldet DVI2)1/2
Ca(E) = \/ 2K max (k"'l ZJ‘ZC | | )
k1 T L jgc | det DV

where the max is taken over all k x (k — 1) submatrices D = Dy; 4}, for which

the denominator does not vanish.
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As we remarked in the Introduction, Corollary 1 gives an explicit criterion for
deciding whether a £1 matrix gives a good Kashin splitting and the assurance
that there are (many) such matrices. We hope this will help in a search for an
explicit construction of a Kashin splitting.

Remark: 1t is casy to sce that Theoremt 1 implies that for each positive integer
k. with probability larger than 1 — ¢~ a k x k matrix B with independent
+1 entries satisfies the following: Letting Iy be {; Be € VFBY} and K2 be
the symumetric convex Imll of V& times the canonical wnit vector basis in R¥
(= ﬁB{"). then Iy N K lies hetween two universal multiples of the Euclidean
unit hall. BS.

3. Some related results and remarks

Kashin also proved that for any 0 < A < 1 and any » there is a [An]-dimensional
subspace E of LY which is ('(A)-isomorphic to a Hilbert space where C'(A) de-
pends only on A (actually. he proved that C,(F) < C{A)). A similar stateient
holds for almost isometries, although we need to replace “any 0 < A < 17 with
“some 0 < A < 17: For every ¢ > 0 thert is a A = A(7) snch that for any n
there is a subspace of L7 of dimension at least A which is (1 4 z)-isomorphic
to a Hilbert space. This is proved in [FLM] (and. without stating it explicitly,
alrcady in [Mi]). The proofs are again probabilistic and we are far from having
any explicit embeddings.

What about embeddings given by a span of rows of matrices whose entries take
values in some small set of values? It is not very hard to see that a similar proof
to the one here gives, for any 0 < A < 1 and any n, a subspace E of LY on which
C,(E) < C'(A) and which is spanned by vectors whose entries are taken from a
four point set (actually, the set consists of 0. £1 and one other specific value. only
the 1 are chosen randomly). Moreover, there is a corresponding determinantal
formula for determining whether a space from this collection satisfies (', (E) <
C'(A). These subjects will be detailed in a fortheoming MSc thesis of Boris Levant
written at the Weizmann Instifute.

It is also possible to find. for every 0 < A < 1. a good Hilbertian subspace
of L} of dimension [An] spanned by rows of a [An] x n matrix with 1 cutries.
This follows from the main result of [Sc] where a similar statement with some
0 < A < 1 instead of every 0 < A < 1 is proved. together with the method of
[JS] where it is shown that whenever E is a k-dimensional subspace of L7 then,
for all @ > 1. the restriction operator onto some [ak] of the n coordinates is a
C-isomorphism when restricted to E and where C' depends on k/n only. The
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proof in [Sc] uses a concentration inequality similar to the one in the first part of
Lemma 1. Using a variation on the second part of that lemma as well (and the
restriction method of [JS]) one can get a bit more.

PROPOSITION 3: For all 0 < XA < 1 and all n there is a [An] x n matrix A with
+1 entries such that for all « € SP-1

C7' (M) < lladlLy < llad]y < C(N)
where C()\) depends on A ouly.

The details of the proof will be given in Levant’s thesis.

Remark: Going back to the search for an explicit £1 matrix B for which the
span of the rows of [\/ZI , B] gives a good Kashin splitting, a first candidate to
look for is the Walsh matrix. However, it is easy to see that this is not the
case. Assume k = 2%; reindex the columns 1,...,%k as {—1,1}! and the rows
by {0}sci1....ey and let the o,c term of the matrix B be Wy(c) = [];e, &i-
Consider the vector of coefficients ¢ = (a,) where a, is 1 whenever ¢ is a subset
of {1,...,t/2} (assuming ¢ is even) and 0 otherwise. Then it is not hard to see
that ||Vkal|x = [laBl|px = k*/*, while ||Vka| s = laB| s = 1.

The method of the proof of the main theorem may be useful for other appli-
cations. The idea of the proof was that we split the sphere S~ into two sets.
On one of them the LY and L% are well equivalent and the other one (Ag) is
“small”. Of course the measure of A,’; is basically known and is very small. This
estimate was not good enough for our purposes and we needed another measure
of “smallness” (which was A% C Ff¥ + 6B for some (not too small) [ and (small)
8). There is another measure of smallness that follows easily from the proof here
and may be useful elsewhere. Again, it was not good enough for our purposes.
Recall that A* = {(a1,a2,...,a¢) € S~ 1;k~1/2 SF el <4}

PROPOSITION 4: Let 0 <y < 1 and k € N. Then, for all ¢ > 4~,

N(Ak cBg) < egzi(logﬁﬂog%)
YT - ‘

Proof:  Since for any ¢ C {1,2,...,k} of cardinality [ and for all 0 < § <
1, N(Fk,6B%) < (2671)!, and since the number of subsets of {1,2,...,k} of

cardinality { < £/2 can be evaluated as

(’;) < Mlog(k/D),
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it follows that
(8) N(F,A’,éB.S’) < 3l (log ktiog 3)
By Lemma 2, AX C F} + §B% with 6 = {71y \/k(k — [ + 1). It follows that
N (4K, 28B) < 3og f+los 3),

Letting 6 = /2 and | = [2y\/k(k —{+ 1)/¢] < 2vk/e, we get, for v < ¢/4 (to
ensure [ < k/2),
N(AK,26BE) < Fllos fHos D) g
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