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A B S T R A C T  

Vfe show tha t  for each positive integer k there  is a k × k nmt r ix  B wi th  

4-1 entries such  tha t  p u t t i n g  E to be the  span  of the  rows of the  k x 2k 

ma t r ix  [x/~Ik, B], t h e n  E, E ± is a Kash in  split t ing: The  L~ 1" and  the  L~ k 

are universal ly equivalent  on b o t h  E and  E ±.  Moreover,  the  probabi l i ty  

tha t  a r a n d o m  :t:1 ma t r ix  satisfies the  above is exponent ia l ly  close to 1. 

1. I n t r o d u c t i o n  

For 0 < p < ,~c and n C N let Lp denote R" with the norm 

II:,,IIL~ = (,,-~ ~ I:r~l") 1/~', 
i=l 

where x -- (xt,  .re . . . . . .  r~d. A celebrated tt~eorem of Kashin [Ka] states tha t  

L 2~' can be decomposed into two or thogonal  (with respect to the inner product  

induced by II • IIL~-) k-dimensional subspaces on each of which the two norms 

I1 lILy' and I1" IIL~ are universally equivalent, i.e., putt ing,  for a subset E C_ L~ *, 

C,,(E) = sup{ll~,:ilc~/ll.rtlLg;~' e E,.,, # 0}, 

we can find a k-dimensional subspace of L21 ~" for which 

C2~,(E), C.2k(E ±) <_ C 
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where C < oc is some universal constant. We shall call such a choice of (orthog- 

onal) subspace(s) a Kashin splitting with constant C. 

The proof(s) of the Kashin theorem are probabilistic and do not produce an 

explicit subspace E as above. For example, it is shown that  with high probability 

over the orthogonal group O(k) (where the probability is the Haar measure), the 

span of the rows of the k × 2k matrix [[71, U2], where U1, U2 C O(k) are chosen 

independently, is such a subspace. 

In a recent paper Anderson [An] found an explicit determinantal formula for 

C2k(E) and C2k (E j-) for any k-dimensional subspace E (involving determinants 

of k × k submatrices of the k × 2k matr ix  whose rows are any basis of E).  An- 

derson then continues and presents a discretization of (a variant of) the random 

decomposition, reducing the search of a Kashin splitting to a search among k × 2k 

matrices with integer entries (ranging in some bounded, though of size exponen- 

tial in k, set). The point is that  this suggests a possibility of finding an explicit 
Kashin splitting. It  also permits a (not very efficient) search algorithm for finding 

a good Kashin splitting (although, it seems, for that  the main point in the paper, 

the determinantal  formulas, can be avoided). 

In this paper we take this direction one step farther by showing that  one can 

replace the integral matrices by matrices whose entries are taken only from the set 

{0, v/k, 1, -1} .  More precisely, we show in Theorem 1 that  with high probability 

for a random choice of k × k matr ix  B with entries being independent Bernoulli 

+1 variables, the span of the rows of the matrix [v/kI, B] form a Kashin splitting 

with some universal constant. (Since v/k is not necessarily an integer, one nmy 

wonder whether this is, strictly speaking, a strengthening of Anderson's result. 

However, in the proof of Theorem 1 below one can easily replace v ~  with [v~] 

everywhere and get such a formal strengthening.) 

We would like next t,o indicate what. Anderson's determinantal formula gives 

for such matrices. For R,C two subsets of {1,2 . . . . .  k} denote by Bn,c the 

submatr ix of B formed by the rows in R and the colunms in C. For a submatr ix  

D = Bn,c of B and row i E R let D-i be the matrix Bn\{.i},c; similarly for 

a j ~t C let D +j be the matrix Bn,cuIj}. For l = 1,2 . . . . .  k - 1, a (l + 1) x l 

submatr ix D = Bn,c of B and p = 1, 2 denote 

) l i p  
Ap(D,B)= kP/2EIdetD_ilP + E lde t .  D+JlP . 

ieH j ~ C  

Using Anderson's determinantal formulas one gets, as we shall indicate in Corol- 

lary 1, that  for a k × k matr ix  B the rows of [v/kI, B] form a Kashin decomposition 
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A I ( D , B )  J '  AI(D, B*) }} '  

where the two inner max are taken over all 1 = 1, 2 . . . . .  k - 1 ,  and over all (/+1) x l 

submatrix D of B, for the f r s t  max, and of B*, for the second. 

It follows fl'om our main theorem that there is a k x k matrix B with +1 entries 

tor which 

(1) "~'lllax{nlax{A2(D'B)}'max{A2(n'B*)~Ai(n,/~) A i ( D , B * ) J }  

is bounded by a constant independent of k and for such a matrix this gives the 

splitting constant. 

This of course gives an algorithm (still not very efficient) for searching for 

a Kashin splitting, but niore importantly, it suggests that there might be an 

algebraic or confl)inatorial nmthod of finding an explicit splitting. The tbrmula 

(1) gives an explicit criterion for deciding whether a 4-1 matrix produces such a 

splitting. 

2. T h e  m a i n  r e su l t  

We shall denote by I1"11~ the ~ norm of a = (a,, a2 . . . . .  a,~), 

n 

Ilall, = (~-~ la,+l~) ' /~ 
i = 1  

(notice the difference with H xN L~ defined earlier). Denote by S x'-I the Euclidean 

unit sphere in 11~ a" and by B~ the unit ball of C~, 0 < p _< oc. Given a = 

(al, a2 . . . . .  an) E R ~' denote 

Ep(a) = Ave k -1 ai f i , j l  p 
j=l  i=1 

where the average is taken over all sequences of signs {ei,j }. As is well known 

2 -1/2 <_ El(a) < E2(a) _< 1. (See [Sz] for the stated explicit lower bound; 

we only need some absolute positive lower bound which follows from Khinchine's 

inequality.) In the sequel P denotes the natural probability measure on {-1 ,  1} x~2 

and the general element in this probability space is denoted by {~,~ k c. "}i,j=l" We 
begin with two concentration inequalities. 
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L E M M A  1 : There is an absolute po,sitive constant II such that for all k, all u E ~i" 

and all 0 < C < oo. 

( " ~" ) c"-', (2) P [ l ~ , - ' ~ , l ~ _ a , , ~ , , y l - E , ( a ) l > C E , ( a )  < e  - ' l  g 
j = l  i=1 

and 

k k 

(3)  P ( [ ( k  - I  E ( E a i ~ : i , j ) 2 )  1/2 - E.2(o=)l > C E 2 ( ( t ) )  ~ - e - ' l ( '2k .  
j--1 i=1 

Proof: Let f ,  g: ]R k2 --+ R be the flmctions defined by 

f ( x ) = k - l E  a n d  g(.r)= k -1 Eai.ri,jj ) 
j = l  -- j = l  i=l -- -- 

t k for x = {: :i,j }i,j=l. Both functions are convex and Lipschitz with eonstant 11al[2 

with respect, to the f~-" norm. The latter statement can be proved by computing 

the norm of the gradients of the fimctions at their points of differentiability. The 

analogous inequality to (2), where E1 (a) is replaced with the median of f ,  follows 

fl'om the main result of [Ta]. That  the median can be replaced with the mean is 

simple, well known, and can be found, e.g., in [MS] Proposition V.4. Inequality 

(3) is dealt with similarly. | 

For 1 < I < k denote 

F, ~ = {o, = ( ~ , a ~  . . . . .  "k )  • B~'; ~,,,~ ¢ 0 for at most I values of i } .  

W'e now extend the concentration inequalities of Lemma 1 to simultaneous 

inequalities for the sets F~ ~. 

P R O P O S I T I O N  1: There are absolute positive constants ~l and a such that for all 

k and 1 < ak,  

P \  ( 4:-1 - -  El(a)  > El(a) /4 ,  for EFt k <_ e -'lk 
j = l  i=1 

and 

P((k-lL(Lai~id)2)l/2-E2(a) 
j = l  i=1 - - 

\ 
> E2(a)/4, for some a E F~') <_ e-,1 k" 

Proo~ Given two sets A, B in a linear space we denote by N ( A ,  B) the minimal 

number of shift, s of B whose union covers A. 
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FOl" (y C { 1 . 2  . . . . .  l`'} d e l l o t e  E L, = { ( ,1 ,o .2  . . . . .  a/,.) e /~2g::(ti = 0 for  J ¢ O'}. 

Fix some 1 < 1 < k. then by the usual volmne estinlates (see. e.g., [MS]) tot each 

subset cr C_ {1,'2 . . . . .  k} of cardinality l and for all 0 < ~ < 1, N(F~o'.gB~ ') <_ 

(2~-1) I. It follows from Lemma 1 that for seine al)solute ~/> 0, 

p \  ( l`,-I (*igi.j - > Et (a) /8 .  some a E <_ ~/Iog(2/d)-IIk 

j = l  i= l  

where ,V is some 6-net in F~'. If d is a small enough positive universal constant 
and I / k  is small enough with respect to the universal constants 6 and ~1 (so that 

e Ih~g(2/~)-'lk < e-'l~'/2), it now follows by successive at)proximation (see. e.g., 
[MS]) that 

~ l  h' El(a)  f o r s o l n e a C F 2 ' )  P \  E r, isi,j - > E,(a) /4 ,  (4) <_ e-,~,12. 

j = l  i----1 

Put a = I/L:: assmne o _< 1/2 and also slnall enough tbr (4) to hold. Notice 
that, by Stirling's fornmla, the number of subsets of {1, 2 . . . . .  k} of cardinality 1 
can be evahlated as 

( ] f )  < e; ' l"al°g(t /c ,  ) 

It follows from (4) that 

P (  t : -1  ( t ig i , j  --  El(a)  > El(a)~4, for  SOllle (, E FI ~" 
j----1 i=1 

< e 3k°  log(1 /o) - i iL ' /2 .  

Finally, if a log(1/c~) < q/12. the last quantity is less than e -*/k/4,  which finishes 
tile proof of the first assertion. The second is proved very sinlilarly. II 

LEMMA 2: Let a = (al, a2 . . . . .  o~,) I)e a norm one vector in (~" and let 0 < 3 < 1. 
Assmne k -~I2 k ~i=~ ]aiI <_ 3. Then 

L~ X 1/2 

E ( a * )  2) _</- '~ V / k ( k -  l + 1) 
i=l / 

for all 1 < 1 < k, where {a* } denotes the decreasing rearrangement of  { lai I}. 

Proof: For each 1 < I < k, (k - l + 1)(a~) 2 _> ~=l(a.~)  2. It follows that 

"~ >>- k-1/2 I. 1 > Ik-1/2a~ > l(k(k - 1 + 1)) (a/) 
i= [  [= 

1/2 
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from which the conclusion follows. | 

For 0 < ") < 1, k • N, denote 

k 
. ,  = a • ~ : - i /2  ~ I"-,I < ~' = a • s k - ' .  IlallL~. < ~ . 

i----1 I[('IlIL~ 

Next we extend the concentration inequalities to the sets A.~. 

PROPOSITION 2: There are absolute constants 0 < ? < 1 and 71 > 0 such that 

for all k, 

j----1 - -  

and 

El(a)  > El(a)/2,  for s o m e a •  A k)  < e -@ 

P (  (k  - l £ ( £ a i e ~ , j ) 2 ) ~ f 2 - 1  >1/2 ,  f o r s o n w a • A ~ ) _ < e  -@. 
j = l  i=1 

Proof: Notice first that by the usual c-net considerations starting with Lemma 
1, there are some absolute C < oc and r] > 0 such that 

P \ k  - 1 (  ~-~aiei.j for • R ~̀ _< e -'~k 
j = l  i=l  

and 

P k - 1  a~ ~,) e ' -  >CIIaH2, for s o m e a E R  k < e  -vk. 
j = l  " i=1  

(Actually, the first assertion follows trivially from the second.) Let l = [ak] 
where c~ is the constant from Proposition 1. Now choose "~ > 0 such that, putting 

(~ ~--- /--1"~ V ~ ( ] ¢  -- 1 ~- 1), 3C5 < l/4x/~. 

By Lemlna 2, each a e A~ can be split as a = b + c  with b e Fi k and Iic112 <_ 5. 
Let {ei,j } be such that both 

~ (b) (5) k -1 ~ b.iei,j - E,  <_ El(b)/4 
j = l  i=1 

a n d  

(6) k k Ci~i,J k-' ~ ~ <_ CjIclJ2. 
j -=l  -- 
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Then  the condit ion on 5 implies that. 

k k 

/~:-lj=~ 1 i~=laigi,J--El(a) ~E,(a)/2. 

and 

THEOREM 1: For some absolute ~1 > 0 attd C < oc and t'or all k there are signs 
k . .Ici,jli,j= 1 such that for all a C S *,-1. 

C-1 4 II.AII~#. _< II.AIIL~k _< c 

and 

for all a E S ~'- 1 

C - '  _< II,willLi~,. __4 II,,AIIL~,~. _< C. 
Moreover, this holds with probabili ty larger than 1 - e -~1~'. 

P r o d :  As in the beginning of the proof  of Propos i t ion  2, it follows from L e m m a  

1 tha t  for some absolute C and 7j and with probabi l i ty  at  least 1 - e -,Tt~, 

L - I E  <- L,-' ) <_ c 
j=l  i=1 j=l  i=l 

for all a C S ~'-1. Of  course, the same holds also if we replace ci,j with -e j , i  

everywhere.  I t  follows easily that ,  with probabi l i ty  1 - e -'7~', 

IlaAIILF _< IIaAIIL~. _< (1 + C 2 ) ' / 2 / v ~  

II<--ilIL~.~ _< II<~AIIL~.,- -< (1 + C'2)x/uv~ 

Since, by Proposi t ion  1 and the first pa rag raph  of this proof,  the probabi l i ty  tha t  

at  least one of inequalities (5) or (6) does not hold is less than  e -vk ,  we get 

the first assert ion of the Proposi t ion  (with a different absolute  .i/). The  second 

assert ion is proved very similarly. | 

Given siglls ~ ~' {ci,j}i , j=t,  we shall denote by B the k x k ma t r ix  with entries 

k [v/kI,  B] 2k ma t r ix  whose first k columns form {~i,j}i,j=l and by A = the k x 

v/kit, and the last k colmnns form B. We shall also denote .4 = I - B * ,  v/kI] with 

the obvious meaning  (where B* is the t ranspose  of B).  Note tha t  the row spans 

of A and of A form or thogonal  subspaces of L~ t'. We are now ready to s ta te  and 

prove out" main result. 



344 G. S C H E C H T M A N  Isr. J. Math.  

For the lower l)ound let i l)e the constant fl'om Prol)osition 2. 

1)rol)al)ility 1 - e -'~'. 
k A 

t~,-I j~l = i~l (ti~'i,j _ > 1/2~2 

tbr all a E .4~. ' 
t 

a E S k - l .  

Then, with 

(and the same hohls with - z j . i  instead of £i,j). For the other 

i = l  

It follows easily that, with prol)ability at, least 1 - e -@, 

[I.AII>_> _ II.Al[,4,. > rain{3/2, 1/4v/:22} 

a n d  

11"-411Lgk --> Nc'dllq ' min{ /2, 1/4x/2} 

fox' all  a E S t ' - l .  I 

Recall the definition of Ap(D, B) appearing in the Introduction. 

C O R O L L A R Y  1: There is a constant  C < oo such that  for all k there is a k x k 

ma t r i x  B wi th  +1 entries such that  

At(D,B*)  J J  ~ < C, 

where the first imwr nmx is taken over all 1 = 1, 2 . . . . .  k -  1, and over all (1 + 1) × l 

submat r i x  D o f  B for which the denonfinator is not  zero, while the second inner 

m a x  is taken over all I = 1, 2 . . . . .  k - 1. and over all (l + 1) x l subnla tr ix  D o f  

S*. 
Moreover, the left hand skte  o f  (7) is equal to max{C2~,(E), C2~,(E±}, where 

E is the span o f  the rows o f [ v ~ I ,  B]. 

Proof: By Theorem 1 we only need to address the "Moreover" part. This follows 

easily fi'om section 2.5 in Anderson [An], in which it is shown, in our notation, 

that for a k x 2k matrix A and for E being the span of its rows, 

2 ~  ( ~  E j~c '  Idet D +j 12) 1/2 
C2k(E)  

= V k----~ max t.+ll ~i~tc' I det D+J I 

where the max is taken over all k x (k - 1) submatrices D = D{, ..... t.},c for which 

the denominator does not vanish. 
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As we renmrked in the Introdu<'tion. Corol lary 1 givvs an exl)li('it (-riterion ibr 

deciding whether  a 4-1 ma t r ix  gives a good Kashin sl)litting and the assurance 

tha t  there are (ninny) such nmtri(!es. We hol>e this will hell) in a search for an 

exl)licit constru( ' t ion of a Kashin sl)litting. 

Remark: It  is easy to see tha t  Theorem 1 iml)lies tha t  tot each posit ive integer 

k. with probal>ility larger than  1 - c -'J~', a k × Ji' mat r ix  B with indel)endent 

4-1 entries salisfies the following: Let t ing  I(,  1)e {.r: B.r E vfkB} '} and K., l)e 

the symmetr i ( '  (-onvex hull of x/k t imes the canonical unit ve('tor basis in R t' 

(=  v/-kB~), then Kt  N K2 lies between two mdversal  nmltil)les of the Eu(-lidean 

unit lmll. B~. 

3. S o m e  r e l a t e d  r e s u l t s  a n d  r e m a r k s  

Kashin also 1)roved that  tbr any 0 < A < 1 and any i~ th(,re is a [Al~]-(limensional 

subspa( 'e E of L~' which is C(A)-isontorl)hi(' to a Hilbert  space where C(A) de- 

1)emls only on A (actually. he proved that  C . ( E )  _< C(A)). A similar s t a tement  

holds fi)r ahnost  isometries,  a l though we need to repla(.e "mS" 0 < A < 1" with 

"'some 0 < A < 1": For ever), e" > 0 ther~ is a A = A(:-) such tha t  for any i~ 

there is a subspaee of L~' of dimension at least AJ~ whi(-h is (1 + z)-isomorphi( '  

to a tti l |)ert spa('e. This  is 1)roved in [FLM] (and, wi thout  s ta t ing  it expli('itly, 

a l ready in [Mi]). The  1)root:~ are again probabilisti(, and we are far fi 'om having 

any explicit eml)eddings. 

W h a t  at)out embeddings  given 1)y a span of rows of matr ices  whose entries take 

values in some small set of values? It  is not very hard to see tha t  a similar proof  

to i.ll(, one here gives, for any 0 < A < 1 and all)" m a sul)space E of L~' on which 

C,,(E) < C(A) and whi(.h is sl)anned l)y vectors whose entries are t.aken fl'om a 

tbur point  set (a(-tually, the set consists of 0, 4-1 and one other  specific value, only 

the 4-1 are chosen ran(lonfly). Moreover,  there is a corresponding de tenn inan ta l  

formula for detel'lnilfing whether  a space fl'om this collection satisfies ( ; ,  (E) <_ 

C(A). These sul)je('ts will be detailed in a forth( 'oming MS(' thesis of Boris Levant  

wr i t ten  at  the "~'~,izmaml Ins t i tu te .  

I t  is also possible to find. for (,very 0 < A < 1, a good Hilber t ian subsl)a('e 

of L~' of dimension [An] spanned by rows of a [An] x n ma t r ix  with 4-1 entries. 

This  follows from the main  result of [So] where a similar s ta tenmnt  with some 

0 < k < 1 instead of ever!l 0 < A < 1 is 1)roved, together  with the me thod  of 

[JS] where it is shown tha t  whenever E is a k-dimensional  sul)space of L]' then, 

tbr all ct > 1, the restr ict ion opera to r  onto some [ak] of the it coordinates  is a 

C'-isomorphisln when restr ic ted to E and where C depends on k/Jt only. The  
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proof  in [Sc] uses a concentra t ion inequality similar to the one in the first pa r t  of 

L e m m a  1. Using a variat ion on the second par t  of tha t  l emma  as well (and the 

restr ict ion me thod  of [JS]) one can get a bit more.  

PROPOSITION 3: For all 0 < A < 1 and all n there is a [An] x n matr ix  A with 

:kl entries such tha t  for all a E S [~ ' ] - l ,  

C-~(A) _< IIaAIILr _< IIaAIIL~, ~ C(A) 

where C(A) depends on A only. 

The  details of  the proof  will be  given in Levant ' s  thesis. 

Remark: Going back to the search for an explicit ±1 ma t r ix  B for which the 

span  of the rows of [ v ~ I ,  B] gives a good Kashin  split t ing, a first candidate  to 

look for is the Walsh nmtrix.  However, it is easy to see tha t  this is not the 

case. Assume k = 2t; reindex the columns 1 . . . .  ,k  as { - 1 ,  1} t and the rows 

by {a}oc_{i ..... t} and let the ~,~ t e rm of the ma t r ix  B be W~(~) = l-[iEo~i- 

Consider the vector  of coefficients a = (ao) where ao is 1 whenever a is a subset  

of {1 . . . . .  t /2}  (assuming t is even) and 0 otherwise. Then  it is not hard to see 

tha t  IIv/kailL~ = IlaBIIL~ = k i/4, while ]lv/kaliL~ = IIaBIIL~ = 1. 

The nle thod of the proof  of the main  theorem may  be useful for other  appli- 

cations. The  idea of the proof  was tha t  we split the sphere S k-1 into two sets. 

On one of t h e m  tile L1 k and L~ are well equivalent and the other  one (A~) is 

"small".  Of  course the nleasure of A~ is basically known and is very small. This  

es t imate  was not good enough for our purposes and we needed another  measure  

of "smallness" (which was ,4~ C Fi t~ + (fB~: for s o m e  (not too small) l and (small) 

5). There  is another  measure  of smallness tha t  follows easily from the proof  here 

and may  be useful elsewhere. Again, it was not good enough for our purposes.  

Recall t ha t  A~ = { ( a l , a 2 , .  • • ,a~.) C S k - 1 ; k  -1/2V~kz_.,/=l lail - < 7}. 

PROPOSITION 4: Let  0 < 7 < 1 and k E N. Then, for all ~ > 4 7, 

N(A~, ~B~) < ~(~og ~+,og ~). 

Proof'. Since for any a C_ {1,2 . . . . .  k} of cardinal i ty l and for all 0 < 5 < 

1, N(F2,SBk2) <_ (25-1) t, and since the number  of subsets  of  {1,2 . . . . .  k} of 

cardinal i ty  I ~_ k /2  can be evaluated as 

( : )  ~_ e 3ll°g(k/l), 
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it follows tha t  

(8) 
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N(F/'~, (~B~:) < e at(I°g }+log 2). 

By Lemma 2, A~ C Fi ~: + 5B2 k with 5 = 1 - " ~ v / k ( k  - l + 1). It  follows that  

N(A~, 2~B~) _< e 3t0°g ~+~og ~). 

Letting 6 = e /2  and l = [27v/k(k - 1 + 1)/e] _< 2"Tk/e, we get., for "y < e /4  (to 

ensure 1 < k/2) ,  
N(ATk, 2~B2 #) _< e6~--~~-(log 2-~+log 4). | 
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